Novel radiolabeled O6-benzylguanine (O6-BG) derivatives, 2-amino-6-O-[11C]-[(methoxymethyl)benzyloxy]-9-methyl purines ([11C]p-O6-AMMP, 1a; [11C]m-O6-AMMP, 1b; [11C]o-O6-AMMP, 1c), 2-amino-6-O-benzyloxy-9-[11C]-[(methoxycarbonyl)methyl]purine ([11C]ABMMP, 2), and 2-amino-6-O-benzyloxy-9-[11C]-[(4′-methoxycarbonyl)benzyl]purine ([11C]ABMBP, 3), have been synthesized for evaluation as new potential positron emission tomography (PET) imaging agents for the DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT) in breast cancer. The appropriate precursors for radiolabeling were obtained in two to three steps from starting material 2-amino-6-chloropurine with moderate to excellent chemical yields. Tracers were prepared by O-[11C]methylation of hydroxymethyl or acid precursors using [11C]methyl triflate. Pure target compounds were isolated by solid-phase extraction (SPE) purification procedure in 45–65% radiochemical yields (decay corrected to end of bombardment), and a synthesis time of 20–25 min. The activity of unlabeled standard samples of 1–3 was evaluated via an in vitro AGT oligonucleotide assay. Preliminary findings from biological assay indicate the synthesized analogs have similar strong inhibitory effectiveness on AGT in comparison with the parent compound O6-BG. The results warrant further evaluation of these radiotracers as new potential PET imaging agents for the DNA repair protein AGT in breast cancer in vivo.
This study describes γ-imaging of the secondary tumors from the transplanted human fetal striatum neural stem cells-derived primary tumor cells in nude mice. The subcutaneous primary tumors were detected to express integrin αvβ3, and the corresponding cells were isolated and enriched in vitro, then transplanted to the nude mice. The technetium-99m-labeled Arg-Gly-Asp peptide, with high affinity to integrin αvβ3, was prepared for biodistribution and γ-imaging. The secondary tumors were readily visualized at 1-h postinjection, and the tumor uptake of radiotracer was similar to that of positive control animals transplanted with U87MG human glioma cells. The tumor specificity of radiotracer was demonstrated by blocking experiment. We concluded that γ-imaging is a promising approach in imaging the tumorigenesis of transplanted stem cells in vivo.
Purpose: Abegrin is a monoclonal antibody to human integrin αVβ3, a cell adhesion molecule highly expressed on actively angiogenic endothelium and glioblastoma multiforme tumor cells. The purpose of this study was to evaluate the efficacy of a novel90Y-Abegrin radioimmunotherapeutic agent in murine xenograft glioblastoma models with noninvasive in vivo molecular imaging modalities.
Experimental Design: A s.c. U87MG human glioblastoma xenograft model was used to determine maximum tolerated dose (MTD), biodistribution, dose response, and efficacy of90Y-Abegrin. Antitumor efficacy was also characterized in an orthotopic U87MG and in a HT-29 colorectal cancer model, a low integrin-expressing carcinoma. Small-animal positron emission tomography imaging was used to correlate histologic findings of treatment efficacy.
Results: MTD and dose response analysis revealed 200 μCi per mouse as appropriate treatment dose with hepatic clearance and no organ toxicity. 90Y-Abegrin–treated U87MG tumor mice showed partial regression of tumor volume, with increased tumor volumes in 90Y-IgG, Abegrin, and saline groups. 18F-FDG imaging revealed a reduction of cell proliferation and metabolic activity whereas 18F-FLT reflected decreased DNA synthesis in the 90Y-Abegrin group. Ki67 analysis showed reduced proliferative index and quantitative terminal deoxynucleotidyl transferase dUTP nick-end labeling–positive analysis revealed increased DNA fragmentation and apoptosis in 90Y-Abegrin animals. CD31 and 4′,6-diamidino-2-phenylindole staining showed increased vascular fragmentation and dysmorphic vessel structure in 90Y-Abegrin animals only. Orthotopic U87MG tumors treated with 90Y-Abegrin displayed reduced tumor volume. HT-29 tumors showed no significant difference among the various groups.
Conclusion: Radioimmunotherapy with 90Y-labeled Abegrin may prove promising in the treatment of highly vascular, invasive, and heterogeneous malignant brain tumors.
In this report, we present the synthesis and evaluation of the 99mTc-labeled β-Ala-BN(7−14)NH2 (ABN = β-Ala-Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2) as a new radiotracer for tumor imaging in the BALB/c nude mice bearing HT-29 human colon cancer xenografts. The gastrin releasing peptide receptor binding affinity of ABN and HYNIC-ABN (6-hydrazinonicotinamide) was assessed via a competitive displacement of 125I-[Tyr4]BBN bound to the PC-3 human prostate carcinoma cells. The IC50 values were calculated to be 24 ± 2 nM and 38 ± 1 nM for ABN and HYNIC-ABN, respectively. HYNIC is the bifunctional coupling agent for 99mTc-labeling, while tricine and TPPTS (trisodium triphenylphosphine-3,3′,3′′-trisulfonate) are used as coligands to prepare the ternary ligand complex [99mTc(HYNIC-ABN)(tricine)(TPPTS)] in very high yield and high specific activity. Because of its high hydrophilicity (log P = −2.39 ± 0.06), [99mTc(HYNIC-ABN)(tricine)(TPPS)] was excreted mainly through the renal route with little radioactivity accumulation in the liver, lungs, stomach, and gastrointestinal tract. The tumor uptake at 30 min postinjection (p.i.) was 1.59 ± 0.23%ID/g with a steady tumor washout over the 4 h study period. As a result, it had the best T/B ratios in the blood (2.37 ± 0.68), liver (1.69 ± 0.41), and muscle (11.17 ± 3.32) at 1 h p.i. Most of the injected radioactivity was found in the urine sample at 1 h p.i., and there was no intact [99mTc(HYNIC-ABN)(tricine)(TPPTS)] detectable in the urine, kidney, and liver samples. Its metabolic instability may contribute to its rapid clearance from the liver, lungs, and stomach. Despite the steady radioactivity washout, the tumors could be clearly visualized in planar images of the BALB/c nude mice bearing the HT-29 human colon xenografts at 1 and 4 h p.i. The favorable excretion kinetics from the liver, lungs, stomach, and gastrointestinal tract makes [99mTc(HYNIC-ABN)(tricine)(TPPTS)] a promising SPECT radiotracer for imaging colon cancer.